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SUMMARY 

A least-squares finite element method based on the velocity-pressure-vorticity formulation was proposed 
for solving steady incompressible Navier-Stokes problems. This method leads to a minimization problem 
rather than to the saddle point problem of the classic mixed method and can thus accommodate equal-order 
interpolations. The method has no parameter to tune. The associated algebraic system is symmetric and 
positive definite. In order to show the validity of the method for high-Reynolds-number problems, this paper 
provides numerical results for cavity flow at Reynolds number up to loo00 and backward-facing step flow at 
Reynolds number up to 900. 
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1. INTRODUCTION 

During the past decades various finite element methods for incompressible viscous flows have 
been developed. Extensive results can be found in the literature.'- lo Most of these finite element 
methods are based on the velocity-pressure formulation because of its simpler boundary condi- 
tions. Three methods are commonly used to solve the velocity-pressure equations. They are the 
classic Galerkin mixed method, the penalty method and the streamline upwind Petrov-Galerkin 
method. 

In the classic Galerkin mixed method different elements have to be used to interpolate the 
velocity and the pressure in order to satisfy the Ladyzhenskaya-BabuEka-Brezzi (LBB) condition 
for the existence of the solution."*'2 Although for two-dimensional problems quite a few 
convergent pairs of velocity and pressure elements have been developed, most of these combina- 
tions employ basis functions that are not convenient to implement. For three-dimensional 
problems this difficulty becomes more severe and only rather elaborate constructions can pass the 
LBB test. Another difficulty is that the matrix associated with the system of linear equations is 
both non-symmetric owing to the convection terms in the Navier-Stokes equations and non- 
positive-definite owing to the uncoupled nature of the incompressibility constraint. Therefore 
direct Gaussian elimination rather than iterative techniques has been considered the only viable 
method for solving the system. However, for three-dimensional problems the computer resources 
required by a direct method become prohibitively large. 
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The segregated adopts a well-known projection’6 or SIMPLE-type finite differ- 
ence algorithm.I7 This type of method should be classified as the Galerkin mixed method. The 
difference between this method and the classic Galerkin mixed method is that the computations 
of velocity and pressure are decoupled by iteration, and efficiency can be achieved in computer 
storage and time. Although in many cases equal-order elements were employed, the theoretical 
justification is still lacking. 

In the penalty method (see e.g. References 18 and 19) the pressure is pre-eliminated by 
penalizing the continuity equation. Involving only velocities, a considerable saving in computing 
time and computer memory is achieved. However, in many engineering applications the pressure 
may be the most important design parameter, but the pressure recovered by using the perturbed 
conservation-of-mass equation exhibits oscillations due to the ill-conditioned pressure matrix. 
Another disadvantage is the penalty parameter, which for small values causes loss of accuracy 
and for too large values sometimes prevents convergence to the solution. Furthermore, because of 
the ill-condition due to the smallness of the parameter, the linear system cannot be solved by 
iterative techniques. Thus it is difficult to use the penalty method to solve large-scale problems. 

The streamline upwind Petrov-Galerkin method” has better accuracy and stability than the 
classic Galerkin formulation. However, it has a parameter which should be tuned. Moreover, the 
resulting algebraic system is non-symmetric. 

In order to overcome these difficulties, we proposed a least-squares finite element method 
(LSFEM)”. 22 based on the first-order velocity-pressure-vorticity formulation. In this paper we 
provide more computational results to show the validity of the method for high-Reynolds- 
number flows. For the sake of completeness we describe the LSFEM for first-order systems in 
Section 2. Section 3 provides a derivation of the first-order velocity-pressure-vorticity formula- 
tion for the Navier-Stokes equations. In Section 4 the performance of the LSFEM is illustrated 
by the computational results for high-Reynolds-number cavity flows and backward-facing step 
flows. In Section 5 we discuss the features of the LSFEM. Conclusions are given in Section 6. 

2. LSFEM FOR FIRST-ORDER SYSTEMS 

The LSFEM of interest here is based on minimizing the residual in differential equations in the 
&-norm. The LSFEM requires that the trial functions be smooth enough to lie in the domain of 
the differential operator. For example, for second-order differential equations the LSFEM must 
use C’-elements, which are not convenient from the computational point of view. In order to use 
simple Co-elements, we start from first-order differential equations. Fortunately, for many 
problems in mechanics and physics the original governing equations, which are derived from the 
conservation laws and the constitutive laws, are of first order. For historical reasons (convenience 
for hand calculation and ease of analysis) these equations are converted into higher-order 
equations with one or few variables. For instance, for incompressible irrotational flows, by 
introducing the potential or the streamfunction, the first-order incompressibility and irrotation- 
ality equations of velocity components are combined into a second-order Laplace equation. After 
solving the Laplace equation, one has to take differentiation of the potential to obtain the velocity 
components in which one is really interested. We think that in the computer age this approach is 
not necessary. 

We consider the boundary value problem 

Lu=f in Q, (1) 

Bu=g on r, (2) 
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where L is a linear first-order partial differential operator, 
n d  au 

i = l  axi 
Lu= 1 A,-+Au, (3) 

Q c Rnd is a bounded domain with a piecewise smooth boundary, r, nd = 2 or 3 represents the 
number of space dimensions, uT = (ul ,  u2 ,  . . . , u,) is a vector of rn unknown functions of x, Ai and 
A are m x m matrices which depend on x, f is a given vector-valued function, B is a boundary 
algebraic operator and g is a given vector-valued function on the boundary. Without loss of 
generality we assume that g is a zero vector. 

Here we do not discuss the existence and uniqueness of the solution to (l), because these depend 
on the structure and properties of L and B and the vector f. In the following discussion it is 
assumed that problem (1) has a unique solution. We indicate that if there is a solution to (l), then 
the following least-squares method produces an approximate solution. It does not matter 
whether the operator L is elliptic, parabolic or hyperbolic. 

Throughout this paper, L2 (R) denotes the space of square-integrable functions defined on 
R with inner product 

(u, U) = uu dQ, U, u E L2(Q), (4) b 
and norm 

Ilulli=(u,4, u E L2 (R). ( 5 )  

We define- the Sobolev space as 

ffl(R) = { u  E L2(R) Id"u E L,(Q), v 1 tl I < 11, (6) 

where a=(a l ,  u2, .  . . ,and)€ Nnd and Itll=al + a 2 + .  . .+and,  and define the associated norms by 

Ilull:= 1 IIa"uIIi. (7) 
l a l < l  

For the vector-valued function u with rn components we have the product spaces 

L2(Q)=(L2(Q2))m, (8) 

H'(Q)=(H'(Q))" (9) 
and the corresponding norms 

j =  1 

Considering the boundary condition of the boundary value problem, we also define the 
function space 

S={UE(H'(Q))~IBU=O on r>. (12) 

Let us suppose that f € L 2  and L: S+L2.  For an arbitrary trial function u ES we define the 
residual function R = Lu - f. The LSFEM is based on minimizing the residual function in 
a least-squares sense. 
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We construct the least-squares functional 

Z(u) = 11 Lu-f 11; =(Lu -f, Lu-f). (13) 
Taking variation of Z with respect to u and setting 61 = O  and 6u=w leads to the following 
least-squares weak statement: find u E S such that 

(Lw, Lu) = (Lw, f )  v w E s. (14) 
In the approximate analysis we first discretize the domain as a union of finite elements and then 

introduce an appropriate finite element basis. Let N, denote the number of nodes for one element 
and I ) j  denote the element shape functions. If equal-order interpolations are employed, i.e. for all 
unknown variables the same finite element is used, we can write the expansion 

where ( u l ,  u 2 ,  . . . , u , ) ~  are the nodal values at the jth node and h denotes the mesh parameter. 
Introducing the finite element approximation defined in (15) into the weak statement (14), we 

have the linear algebraic equations 

KU=F, (16) 

where U is the global vector of nodal values. The global matrix K is assembled from the element 
matrices 

(L$i jL+2, .  . . , L *  N.)~(L*~,L*Z ,...7LI)N,)dn, (17) 

in which n,cQ is the domain of the eth element, T denotes the transpose and the vector F is 
assembled from the element vectors 

(LI), 9 W Z , .  ., L*NJTfdR, (18) ..=j*. 
in which 

LI)j = $ j ,  .A ,+  ic/ j,yA2 + IcI j, + $jA. (19) 

Remark I 

If L is an elliptic operator, then we have the inequalities 

(Lw, Lu)G~oIIwII1 I I ~ l I 1 ,  (Lu,Lu)3@IIuII: (20) 
for arbitrary u, w E S ,  where M o  and CL are positive constants. That is, the bilinear form (Lw, Lu) is 
continuous and coercive. Following the classic argument (see e.g. Reference 23, pp. 26-28), if the 
exact solution is smooth enough, we can easily obtain the error estimate 
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where the constant C is independent of the mesh size h and k denotes the order of complete 
polynomial of shape functions. Furthermore, the L2-error estimate can be obtained by the 
Aubin-Nitsche trick (see e.g. Reference 24, p. 88). These facts indicate that all variables with 
equal-order interpolations converge at the optimal rate. More general discussion about the 
mathematical theory of the least-squares finite element method for linear elliptic first-order 
systems can be found in References 25-27. The incompressible Navier-Stokes problems con- 
sidered in this paper can be written as a quasi-linear first-order system (see below), which is 
elliptic when the viscosity is not small. To solve the problems, we have to linearize the system. If 
the viscosity is large enough, for each linearized step we can expect optimality of the LSFEM. For 
convection-dominated (hyperbolic) problems the optimality of the LSFEM may not hold in 
general. However, we can prove that the LSFEM has optimal stability and our numerical 
experiments show that the LSFEM has near-optimal accuracy. Moreover, the corresponding 
iteratively reweighted LSFEM, in which each step is the LSFEM, can accurately capture the 
discontinuity in just one element without any oscillation or diffusion.28 

3. VELOCITY-PRESSURE-VORTICITY FORMULATION 

Consider the following incompressible Navier-Stokes problem: find the velocity u = ( u l ,  u2 ,  u 3 )  
and the pressure p such that 

1 
Re 

u Vu -- Au + Vp = f in R. 

Here all variables are non-dimensionalized, f=(fx,f,,fi) is the body force and Re denotes the 
Reynolds number, defined as 

U L  
Re=-- ,  

v 

where L is a reference length, U is a reference velocity and v is the kinematic viscosity. Of course, 
the boundary conditions should be supplemented to complete the definition of the boundary 
value problem. 

Since the momentum equations (22b) involve second-order derivatives of velocity, direct 
application of the least-squares method requires the use of inconvenient C'-elements and 
produces matrices with large condition number.26 In order to use the LSFEM described in 
Section 2, we must consider the governing equations of incompressible flows in the form of 
first-order systems. There are several ways to do this. For example, one may write the 
Navier-Stokes equations in the velocity-pressure-stress formulation, which is useful for visco- 
elasticity and non-Newtonian flow problems, but this formulation has too many variables. 
Instead, we introduce the vorticity 0 = V x u and rewrite the incompressible Navier-Stokes 
equations in the following first-order quasi-linear velocity-pressure-vorticity formulation: 

v * u = o ,  

u . V u + - V x o + V p = f  in R, 
1 

Re 

0 - v x u = o .  
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We shall consider the two-dimensional problem only: 

au av 
ax ay -+-=0, 

au au ap 1 aw 
ax ay ax R e a y  

av av ap 1 am 
ax ay ay R e a x  

ay ax 

u - + v - + - + - - =fx, 

u-++-+----=f, in Q, 

a u  av 
0 + ---= 0. 

We can write (24) in the general form of a first-order system (1) in which 

0 0  0 

A l = [ i  : A2=[' 0 0 1  ' ' l i e ) ,  

0 - 1  0 1 0 0  

/o  0 0 o \  / o  \ 
0 0 0 0  

A = I o  0 0 o]9 f=[]9 

0 0 0 1  

(24) 

Since the system is of first order, the boundary conditions are very simple and do not involve 
the derivatives of unknowns. Let (rl, r2, r,, r4, r,) denote the sides of r. The unit outward 
normal vector to r is denoted by n and the tangential vector to r by t. We may consider, for 
instance, the following boundary conditions: 

(a) u=O, u = O  on r, (the wall) 
(b) u=constant, v = O  on r2 (the far field) 
(c) u=given, v = O  on r, (the well-developed inflow or outflow) 
(d) u,=O, o=O, p=constant on r4 (the free surface) 
(e) u,=O, p=constant on r, (the outflow). 

We note that in most cases the specification of boundary conditions for the vorticity o is not 
necessary. At the solid wall and the well-developed inflow or outflow boundaries we prescribe 
only the velocity components; no vorticity is involved. At the free surface we specify o = O .  

The quasi-linear problem (25) can be linearized by the successive substitution or Newton's 
scheme, then the linearized equations can be solved by the LSFEM. 

Remark 2 

It should be noted that as usual we use Gaussian numerical quadrature to evaluate the element 
matrices. As explained in our previous paper,2' the number of 'Gauss' points required for the 
solution is of some importance. Inspection of the fourth equation in (24) shows that the vorticity 
o and the derivatives of velocity components u and v appear simultaneously. When an equal 
order interpolation is employed, it is impracticable to reduce the residual of this equation to zero 
throughout. For this reason we must use reduced integration. The necessity of reduced integra- 
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tion can also be explained from another point of view. The least-squares method with numerical 
quadrature is equivalent to a weighted collocation least-squares method in which the residual 
equations are collocated at the interior points in each element, then the algebraic system is 
approximately solved by the weighted least-squares method. The 'Gauss' points for calculating 
the element matrices in the least-squares method correspond to the collocation points in the 
collocation method. The number of collocation points ('Gauss' points) thus cannot be chosen 
arbitrarily and should be compatible with the number of unknowns. For bilinear elements we 
use one-point Gaussian quadrature. In this case the total number of unknown nodal values is 
equal or approximately equal to the total number of residual equations in the collocation 
method, and the least-squares method is able to force the residuals to be almost zero at  the 
'Gauss' points; therefore we can expect a good solution at  these points. Our numerical experi- 
ments reveal that the solution at Gaussian points is very smooth, while the nodal values of p and o 
have some oscillation. Therefore we simply average the values at the Gaussian points to obtain the 
final nodal solution. For triangle elements, even one-point Gaussian quadrature will lead to an 
overdetermined algebraic system and the least-squares method is not able to force the residuals to 
be zero. This explains why the use of triangle elements will lead to the locking problem. All the 
above-mentioned troubles can be completely overcome by using the p-version least-squares 
method. 

4. NUMERICAL RESULTS 

The LSFEM described in the previous sections has been tested by solving the driven cavity flow 
and backward-facing step flow. In this study a simple successive substitution scheme is used to 
obtain the solution. The velocity field at the previous step is used to calculate the coefficient 
matrices A l ,  A2 and A. This paper is concerned with the validity of the LSFEM only; thus 
a Gaussian elimination, which is not efficient, is used to solve the algebraic system. The solutions 
are updated using an underrelaxation method given as 

U*=au"+(l-a)u"-', (26) 
where a is the underrelaxation number, superscript n denotes the substitution level and super- 
script * denotes the updated solution. The difference between the results of two consecutive steps 
is defined as 

e =  max I u ~ - u ~ - '  I, 
i = l ,  . . . ,  Nm 

where i denotes the node and N, is the total number of nodes. The substitution continues until the 
difference e becomes less than the tolerance 

Driven cavity flow 

The definition of driven cavity flow is as usual; 50 x 50 non-uniform bilinear elements are used 
and the mesh distribution is shown in Figure 1. The smallest element size has h =0.002 at the four 
corners. 

The boundary conditions for (u, v) are u = v = 0 everywhere except on the top lid where u = 1, 
u = 0. We specify p = 0 at  the centre of the bottom. At the two lower corners the fluid does not flow, 
i.e. au/dy=av/ax=O; thus we specify w=O. The two upper corners are singular points where 
w=--co. Since we assume that the velocity components are bilinear functions and u =  1, v=O 
along the upper boundary, we must have w = - au/ay + &/ax = - l/h + 0 = - 500. Therefore we 
specify w = - 500 at the two upper corners as the computational boundary conditions. Our 
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numerical experiments reveal that these four conditions on the vorticity at the four corners are 
not necessary, although the vorticity conditions at the two low corners have a little good inference 
on the solutions around the corners. 

The Reynolds numbers considered are 100,400,1000,3200,5000,7500 and 10O00. In each case 
u = u = 0 is taken as an initial guess, i.e. the first step is the solution of the corresponding Stokes 
problem. No underrelaxation is necessary for Re<3200; a = 0 4  is used for Re>3200. The 
required numbers of iterations are 8, 12, 14, 22, 28, 40 and 67 respectively. 

The computed results (streamlines, pressure contours, vorticity contours and velocity vectors) 
for Re = 1000,5000 and 10 000 are shown in Figures 2-4 respectively. Overall, the streamlines and 
vorticity contours compare rather well with those of Ghia et ~ 1 . ~ ’  except for one region, the lower 
right eddy at Re= 10000. The size and shape of this small eddy compare more favourably with 
those of Gresho et aL3’ The pressure contours compare well with those of Kim31 and Sohn 
et The horizontal velocity profiles at x=0.5 compare well with those of Ghia et aL2’ in 

(a) Streamline (b) Pressure 

(c) Vorticity (d) Velocity 

Figure 3. Computed results for cavity flow at Re=5000 
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(a) Streamline (b) Pressure 

(c) Vorticity (d) Velocity 

Figure 4. Computed results for cavity flow at Re=10000 

Figure 5. Figure 6 shows the convergence history of the &-norm of residuals for Re= 1000,3200 
and 5000. 

Backward-facing step flow 

This example is chosen to compare the computational results with the experimental data of 
Armaly et al.33 The step has a height of 0-0049 m. The small channel upstream of this step has 
a height of 00052 m. The inlet boundary is located 3 5  step heights upstream of this step. The total 
length behind the backward-facing step is 45 step heights. A total of 2550 non-uniform bilinear 
elements (6 x 15 for the smaller channel and 82 x 30 for the larger channel) are used, with fine 
meshes near the step. 

The Reynolds number Re = UD/v  is based on the hydraulic diameter ( D  = 0.0104 m) of the inlet 
channel and the average velocity (u=O.6667 m s-'). The various Reynolds numbers are obtained 
by varying the kinematic viscosity v. 
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Figure 5. Horizontal velocity profile for cavity flow: -, present; A, Ghia et 

0 r 

Figure 6. Convergence history for cavity flow 
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The condition u = u = O  is used as an initial guess for Re= 100, the converged solution for 
Re = 100 is used as an initial guess for Re = 200, and so on. The required numbers of substitutions 
are 13, 19, 29, 39, 42, 51, 73, 79 and 84 for Reynolds numbers of 100,200, . . . ,900 respectively. 
Underrelaxation is not used. 

We tested the following combinations of boundary conditions. 

(a) A parabolic velocity profile with a centreline velocity of 1.0 ms- '  and a corresponding 
linear vorticity profile are imposed at the inlet; u=O, p = O  are prescribed at the exit 
boundary; o = O  is given at the lower step corner. 

(b) The velocity profiles are prescribed at the inlet and outlet; p = O  is given at the outlet. 

In case (b) no vorticity boundary conditions are involved. For these two cases the numerical 
results (including the convergence history) have no difference. This confirms that at the boundary, 
where the velocity components are given, the boundary conditions on the vorticity are not 
necessary, although the vorticity may be known in advance. 

(a) Streamline 

(b) Pressure 

. 

(c) Vorticity 

Figure 7. Computed results for backward-facing step flow at Re=400 
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The computed results (streamlines, pressure contours and vorticity contours) for Re = 400, 500 
and 800 are shown in Figures 7-9 respectively. The computed pressure is adjusted by a constant 
such that p = 0 at the lower step corner. The reattachment length of the recirculating zone behind 
the step and the location of detachment and reattachment of another recirculating zone near the 
upper wall are compared with experimental data in Figure 10, where x1 is the reattachment 
location of the primary vortex, x4 is the separation location of the secondary vortex at the top 
wall, x5 is the reattachment location of the secondary vortex and the distance is measured from 
the expansion step. The reattachment length xs compares well with the experimental results. 
When the Reynolds number is greater than 400, the computed reattachment length x1 differs from 
the experimental results, probably owing to the fact that the fluid flow becomes three-dimen- 
s i0na1.~~ 

5 .  FEATURES OF THE LSFEM 

The (u, u, p ,  w )  formulation (24) is not new. The key issue is how to use it. Johnson34 formulated 
the streamline diffusion method for time-dependent incompressible Navier-Stokes problems 

(a) Streamline 

(b) Pressure 

( c )  Vorticity 

Figure 8. Computed results for backward-facing step flow at Re= 500 
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(a) Streamline 

(b) Pressure 

(c) Vorticity 

Figure 9. Computed results for backward-facing step flow at Re=800  

based on the (u, u, p ,  o) formulation. His method is accurate and stable and can accommodate 
equal-order interpolations. As with the SUPG method, his method has a parameter which should 
be tuned and the resulting algebraic system is non-symmetric. 

We believe that the LSFEM has more advantages. This method leads to a minimization 
problem rather than to a saddle point problem, and the choice of combination of elements is thus 
not subject to the LBB condition. For Stokes problems the numerical experiments exhibit the 
optimal rate of convergence for all variables with equal-order interpolations.’* A theoretical 
error analysis supports this o b ~ e r v a t i o n . ~ ~  The accommodation of equal-order interpolations is 
desirable for h-version finite element methods. However, we do not want to emphasize this point 
too much, because non-equal-order interpolations can be trivially realized in p-version finite 
element codes. If high-order polynomials are used, e.g. k > 10, it does not matter whether the 
interpolations are equal-order or non-equal-order. 
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REYNOLDS NUMBER 

Figure 10. Reattachment length versus Reynolds number for backward-facing step flow: -, present; A, 0, 0 
experimental-x, lh, xJh, x , / h  respectively 

The most important advantage of the LSFEM is that the resulting matrix is symmetric and 
positive definite. Therefore simple iterative techniques such as the conjugate gradient method can 
be employed to solve large-scale problems on vector and parallel computers. 

Furthermore, there are no added parameters in our LSFEM. We should also emphasize that in 
our method there is neither artificial dissipation nor upwinding, i.e. the LSFEM is clean and 
robust. 

For the LSFEM the implementation of boundary conditions is quite simple. Although we 
introduce the vorticity as an independent variable, for most practical problems there are no 
boundary conditions on the vorticity. Let us explain this by considering the one-dimensional 
second-order differential equation 

-=f in (0, 11, u(0)  = 0, u(l)=O. (27) 
d2u 
dx 

where f~ L2(0, 1). By introducing a variable p ,  it can be rewritten as the first-order system 

(28) 
du 

dx dx 
*=f in (0,1), p - - = O  i n (0, 1x u(0) = 0, u( l )=  1. 

In (28) there is no boundary condition on p .  It can be proved that the bilinear form of the 
corresponding LSFEM for (28) without extra BCs is continuous and coercive; therefore the 
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LSFEM has a unique solution.21 The same thing is true for high-order multidimensional partial 
differential equations. In our case, as along as the (u, u, p )  formulation subject to boundary 
conditions on (u, u) has a unique solution, the (u, u, p ,  o) formulation of the same problem will 
have the same solution with no BCs on the vorticity. A similar argument about BCs on the 
vorticity for the (w, I)) formulation can be found in Reference 36 and references cited therein. 

6. CONCLUSIONS 

A new finite element method for incompressible Navier-Stokes problems is developed. The 
method is simple, robust and reliable. This method represents a particular application of a unified 
least-squares finite element method for first-order partial differential equations in computational 
physics. Further developments are under way for solving 3D problems and time-dependent 
problems. Theoretical investigation is also needed. 
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